
Supplementary Information

Supplementary 1 - Energy, net moment and toroid mo-
ment

The magnetic energy U can be scaled with

U0 =
µ0m

2
0

4πd3
,

where d is a characteristic lengthscale (e.g. the edge length of the cube), m0

a dipole moment scale and µ0 the vacuum permeability. The dimensionless

energy E per dipole can then be defined as

E =
U

NU0

=
1

N

N∑
i<j

mi ·mj − 3 (mi · eij) (mj · eij)

|rij|3
, (1)

where m1, ..,mN describe the dimensionless moments of the N freely ori-

entable dipoles of equal magnitude |mi| = 1 and rij is the dimensionless

relative position vector between dipole i and j with eij denoting the corre-

sponding unit vector.

The net magnetic moment is defined as

M =
1

N

N∑
i=1

mi ,

which is a discrete analogue to the magnetization. The normalization of the

moments |mi| = 1 guarantees that |M| ≤ 1. The toroid moment is defined

with respect to a given point c in space as

T =
1

N

N∑
i=1

pi ×mi ,
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where pi is the vector from the point c to the position of dipole i, see e.g. [1].

The magnetic dipole moment m can be thought of as a current loop in the

limit where its area A goes to zero while its current I diverges, keeping the

product |m| = AI constant. In the same sense, the toroid moment T can be

envisioned as a toroidal inductor coil in the limit where the torus radius R and

cross-sectional tube area A go to zero while the current I diverges, keeping

the product |T| = RAI constant. T is useful to describe vortex-like states

of dipole configurations, like e.g. planar head-to-tail ring configurations, for

which |T| is maximal. For the cube continuum we have M = 0 and T = 0

with respect to the center of the cube.

Supplementary 2 - System of equilibrium equations

Finding all equilibria of a dynamical system with energy E is equivalent

to finding all states of the system where the gradient vanishes. In general,

the gradient has as many components as there are degrees of freedom in

the system, in our case 2N : Two angles per dipole to describe its orienta-

tion. However, we found that the use of cartesian coordinates to describe

the dipole orientations is advantageous compared to the angle formulation:

Firstly, we avoid the inherent coordinate singularities of spherical coordi-

nates. Secondly, the degree of the resulting system of polynomial equations

is lower (quadratic instead of quartic). Thirdly, the structure of the equations

is highly symmetric.

Let the orientation of dipole i be given as mi = (xi, yi, zi)
T, then we can
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define the full orientation vector

Ω := (x1, y1, z1, ..., xN , yN , zN)T ,

which contains the orientations of all dipoles. The energy E can now be

written as a symmetric bilinear form E(Ω,Ω) with the representation

E =
1

2
ΩTW Ω or E =

1

2

3N∑
i,j=1

ΩiW j
i Ωj ,

where W is the symmetric 3N × 3N interaction matrix which encodes the

positional information of all dipoles. W is constant for a given arrangement

(like e.g. the cube). With the definition of the linear combinations

Lik :=
3N∑
j=1

W j
3(i−1)+k Ωj , i = 1, 2, ..., N , k = 1, 2, 3 ,

the zero gradient equations (i.e. equilibrium conditions) for all dipoles can

be expressed in the form of the 3N cyclic equations

Li1 yi = Li2 xi

Li2 zi = Li3 yi i = 1, 2, ..., N

Li3 xi = Li1 zi .

(2)

Since we assume fixed magnitudes for the moments |mi| = 1 the cartesian

description demands N additional “sphere” equations

x2i + y2i + z2i = 1 , i = 1, 2, ..., N . (3)

Altogether Eqs. (2) and (3) set up a strongly coupled system of 4N quadratic

polynomial equations in the 3N unknown components of Ω.
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Supplementary 3 - Upper bound for the number of iso-
lated equilibria

To get an upper bound for the number of possible isolated solutions, our

overdetermined system Eqs. (2) and (3) with 4N equations for 3N un-

knowns has to be reformulated. We “randomize down” to a square system:

The system is replaced by 3N random linear combinations of the original 4N

equations, cf. [2]. Then, a variant of Bertini’s theorem (see e.g. [3] p.163)

assures that the set of isolated solutions for the randomized system is a su-

perset of the original system. Therefore, every upper bound (for the number

of isolated solutions) for the randomized system is one for the original system

as well.

Now we use the basic version of Bézout’s theorem: A polynomial sys-

tem with n variables and n equations of total degree d1, .., dn has at most

Smax := d1d2...dn isolated solutions. The randomized system with 3N vari-

ables consists of 3N quadratic polynomial equations (i.e. the total degree is

always 2). Therefore we have Smax = 23N possible isolated solutions, which

is also an upper bound for the original system (see above). Compared to the

analogous analysis for the angle formulation (Smax = 26N) this is a signifi-

cantly better bound.

Supplementary 4 - Numerical solution method

The system of polynomial Eqs. (2) and (3) is solved with the open-source

software Bertini™: Software for Numerical Algebraic Geometry [4]. This nu-
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merical software framework is developed for industrial problems including

mechanism and robot kinematics, chemistry, and computer-aided design, to

name a few. However, it can be used to solve any system of polynomial equa-

tions. The manageable system sizes for numerical programs like Bertini™ are

much greater compared to symbolic manipulation programs which utilize

Gröbner bases and related methods, see e.g. [5].

The numerical algorithm in Bertini™ is based on homotopy continuation

and uses modern methods like randomization techniques and regenerative

cascades, see [6, 3]. The general idea of homotopy continuation in order to

solve a system Σ, is to consider another system Σ? with known solutions and

deform Σ? to Σ. The deformation is achieved through a parameterization

of the system equations, such that they reduce to Σ and Σ? for different

parameter values.

A parallel version of the software is available based on the Message Pass-

ing Interface (MPI). An overview of the theoretical background in algebraic

geometry, a detailed description of the numerical algorithm and a compre-

hensive user manual for Bertini™ can be found in book [3].

The software provides information about the number of solution compo-

nents and their dimensions. Further, for 0D (isolated) components it gives

the numerical values of the solutions up to any required precision. For higher

dimensional components any number of sampling points can be generated.
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Supplementary 5 - Stability

We now prove the formula connecting the trace of the Hessian matrix H (the

sum of all eigenvalues λk) with the magnetic energy E

2N∑
k=1

λk = Tr (H) = −4E. (4)

Here it is convenient to use spherical coordinates with the polar and az-

imuthal angles θi and φi to describe the orientation of dipole i

mi =

 xi
yi
zi

 =

 cosφi sin θi
sinφi sin θi

cos θi

 . (5)

The energy E in Eq. (1) consists of sums of component-wise products of the

dipole moments. If we define εi to collect all terms of E containing θi and φi

we can write with Eq. (5)

εi := Ai cosφi sin θi +Bi sinφi sin θi + Ci cos θi , (6)

where Ai, Bi, Ci depend on all other angles but not on θi and φi. Note that

since all terms of E consist of pairs of different moments, every term appears

in two different εi and we have

E =
1

2

N∑
i=1

εi . (7)

We need the 2N diagonal entries of H, which are the second covariant deriva-

tives of E with respect to all angles θ1, φ1, θ2, φ2, ..., θN , φN . We may replace

E with the respective εi when differentiating with respect to θi and φi and
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get the diagonal entries

H11 =
∂2ε1
∂θ21

, H22 =
1

sin2 θ1

∂2ε1
∂φ2

1

+ cot
∂ε1
∂θ1

,

H33 =
∂2ε2
∂θ22

, H44 =
1

sin2 θ2

∂2ε2
∂φ2

2

+ cot
∂ε2
∂θ2

,

...
...

(8)

The extra “cot . . . ” term when differentiating with respect to φ is a direct

result of the second covariant derivative in spherical coordinates. Inserting

Eq. (6) into (8) we find

H11 = H22 = −ε1 , H33 = H44 = −ε2 , . . .

and therefore

Tr (H) =
2N∑
k=1

Hkk = −2
N∑
i=1

εi .

This together with Eq. (7) proves relation (4). Note that the only condition

on E for Eq. (4) to hold is that E consists only of component-wise products

of two moments. There may be other types of interactions to which this

relation is applicable.

Supplementary 6 - Robustness of the continuous ground
state

To demonstrate the existence of the continuous ground state as well as the

robustness and practicability of the magnetic coupling, we actually designed

and built two different constructions of the cubic dipole cluster, see Figure 1.

In both experiments the theoretical finding that the ground state continuum
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Figure 1: Practical realizations of the cubic dipole cluster. Left: A construc-
tion which allows 8 Geomag™ toy magnets to rotate freely in their gimbal-
mounts. All white parts are produced with a 3D printer, the black rods are
made of carbon fiber and the bearings are realized with non-magnetic screws.
The centerpoints of the dipoles form a cube with an edge length of exactly
40 mm, see [7]. Right: A Teflon™ block with holes drilled in the corners,
allowing 8 spherical magnets to glide easily and therefore rotate freely. The
resulting magnetic forces are attractive and automatically fix the spheres in
the corners (i.e. the spheres are attracted towards the center). With a color
mark on the spheres (in red) one can see the motion of all spheres along the
continuum if one rotates one of them around its respective space diagonal
(done here with a glass tube with a rubber end).

is the only stable state is confirmed: Any other initial states relaxes immedi-

ately back to the ground state. The motion along the continuum is smooth

with no noticeable force variations already for these first two prototype con-

structions.

To quantify the influence of possible imperfections in the construction

of the magnetic coupling, we perform an analysis of the continuum for a

perturbed system. For that we displace one of the dipoles in a random di-
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Figure 2: Smoothness of the appearing soft mode for the perturbed system
characterized by the relative energy variation. The variation is shown as
a function of the perturbation radius by which one dipole is displaced in a
random direction. The radius is given relative to the cube’s edge length. For
each radius, 1000 random directions are computed. The largest variation of
about 0.37% (for a radius of 1%) occurs for displacement directions perpen-
dicular to the rotation axis, i.e. the space diagonal of the cube. For directions
along the rotation axis the variations are smallest. The upper limit for the
variation depends linearly on the perturbation radius.

rection with a given perturbation radius away from its original position. In

the considered range for the perturbation radius (it does not exceed 1% of

the cube’s edge length) the perturbed ground state remains the only stable

configuration. Still the system can not jump to a different stable equilibrium.

The former continuum becomes a soft mode in the perturbed state. The im-

portant quantity characterizing how flat this soft mode will be, is the relative
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energy variation, given as: The magnitude of the sinusoidal-like magnetic en-

ergy variation along the mode divided by the mode’s mean magnetic energy.

The dependence of the relative energy variation on the perturbation radius

is shown in Figure 2. The maximum variation depends linearly on the per-

turbation radius, showing that no catastrophic alterations in the dynamics

occur, the system is structurally stable.
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