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Abstract

We investigate a planetary model in spherical symmetry, which consists of a solid core and an envelope of ideal and isothermal gas,

embedded in a gaseous nebula. The model equations describe equilibrium states of the envelope. So far, no analytical expressions for

their solutions exist, but of course, numerical results have been computed. The point of critical mass, above which no more static

solutions for the envelope exist, could not be determined analytically until now. We derive explicit formulas for the core mass and the gas

density at the core surface, for the point of critical mass. The critical core mass is also an indicator for the ability of a core to keep its

envelope when the surrounding nebula is removed, because at this point, the core’s influence extends up to the outer boundary at the Hill

radius.

r 2007 Elsevier Ltd. All rights reserved.
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0. Introduction

In recent years, planet formation has raised a lot of new
questions due to observational advances like the discovery
of extra-solar gas giants. In the nucleated instability
hypothesis, gas envelopes are formed around planetary
cores, which in turn are built up by accretion of km-sized
solid bodies. The envelope structure has been investigated
with hydrostatic models, e.g. by Ikoma et al. (2001),
Mizuno (1980), Papaloizou and Terquem (1999), Steven-
son (1982), Wuchterl (1993). There was found an upper
mass limit for static envelopes—the critical mass—above
which no static solutions exist for given nebula conditions.
The dependence of this critical mass on nebula conditions
or material properties (opacities) is a quite complex
problem. In the isothermal idealization used in this article,
we can make an analytical approach, giving us deeper
insights into the basic features of core–envelope structures
and especially the critical mass.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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As there are several definitions of the critical mass and
the respective critical core mass (CCM) (cf. Wuchterl,
1991), we have to specify what we mean with ‘‘critical
mass’’. We follow the definition introduced by Mizuno
(1980) where the CCM is defined as the first maximum of
McðMtotÞ. For a given total mass M tot an eigenvalue
problem is solved, giving the respective core mass Mc. Out
of a series of increasing total masses a relation McðMtotÞ

arises. If this relation has a maximum, a contradiction
occurs. Seen as a quasi-static time evolution, the core mass
is a constantly growing structure but the maximum shows
that there is no static solution for a core mass above the
maximum, so this core mass is called the critical one after
Mizuno (1980), hereafter called ‘‘classical’’ CCM. This
definition makes no statements about the further evolution
of a critical configuration, only the static possibilities are
ruled out. It should be noted that the described procedure
to get the CCM is done for fixed nebula parameters, i.e. for
given outer density and temperature. This fact leads to
another description of the phenomenon, also used in this
article (cf. Fig. 1), presenting a manifold of possible static
core–envelope structures in a parameter set of core mass

www.elsevier.com/locate/pss
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Fig. 1. Contour plot of envelope mass at the Hill radius, function of core mass Mc and gas density rcs at core surface. Parameters are given in the text.
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Mc and gas density (or pressure) at the core surface rcs
(Broeg, 2006; Pečnik and Wuchterl, 2005). In this descrip-
tion we find the point of CCM if we fix the outer
temperature and follow a line of constant outer density in
the direction of increasing total mass. We will reach at least
one maximum in the core mass, corresponding exactly to
the classical CCM. A nice visualization how the McðM totÞ-
plot can be understood as a projection out of the manifold
is shown in Broeg (2006). It shows that the CCM is closely
related to the highest core mass value of the so-called
‘‘region IV’’ in the described parameter set, our point O in
Fig. 1. The direct connection to our work gives the
isothermal investigation by Pečnik and Wuchterl (2005).
Besides the local CCM, defined there as the outer density
depending classical CCM, they introduce a global CCM
which is independent of the outer density and corresponds
again to our point O. In fact this global CCM is the
classical CCM for the highest possible outer density
permitting hydrostatic equilibrium. The finding that the
classical CCM is quite independent of the outer density
(Mizuno, 1980) can be explained with the strong decrease
of the outer density for increasing core mass beyond the
global CCM, the point O, because of the strong gravita-
tional influence the core gets. So the global and classical
CCMs do not differ significantly since all outer densities
are realized in a short core mass range. But this behaviour
changes for small orbital distances (Ikoma et al., 2001) or
fully convective envelopes (Wuchterl, 1993). For small
orbital distances this happens because the above-men-
tioned fast drop in outer density beyond the point O is
slowed down due to increasing gas temperature. Naturally
the global CCM has the smallest value under all possible
CCMs with their respective nebula densities, since it is
related to the highest outer density.
Being a main assumption of this article, the isothermal
approximation has to be discussed. As all attempts to
justify this assumption involve a lot of vague estimations
about opacity, luminosity and other temperature gradient
related parameter values (e.g. Pečnik and Wuchterl, 2005),
we choose a rather pragmatic way to show the applicability
of the isothermal assumption. Clearly, for high densities
especially in the compact near core parts of the envelope,
significant temperature gradients appear. But in the
parameter range of interest for this work, i.e. for
densities up to r � 1 � 103 kgm�3 (cf. the ‘‘height’’ of the
point O in Fig. 1), we justify the approximation by
comparing our results with respective non-isothermal
investigations. Critical density (cf. Section 4.1) as well as
the global CCM (cf. Section 4.6) agrees up to a factor of 2
with the respective non-isothermal results. So the isother-
mal investigation provides more than just qualitative
answers.
For a review of the whole topic cf. Wuchterl et al. (2000),

for a detailed discussion of the critical mass cf. Wuchterl
(1991).

1. The model and its equations

Our model contains a solid, rigid core, with mass Mc and
mean density Rc, so that we get the core radius

rc ¼

ffiffiffiffiffiffiffiffiffiffi
3Mc

4pRc

3

s
.

The envelope starts at rc with a given density rðrcÞ :¼rcs
(gas density at the core surface). To describe the mass
distribution MðrÞ and density profile rðrÞ in the envelope,
we need the following equations. The force density balance
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Fig. 2. Examples for radial density profiles for the four different regions in Fig. 1.
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for the hydrostatic equilibrium is

rP ¼ �rrf,

where P is the gas pressure and f the gravitational
potential. In radial symmetry and with

rf ¼ �fg ¼
GM

r2
r

r
,

with fg the specific gravitational force, we get

dPðrÞ

dr
¼ �

GMðrÞrðrÞ
r2

. (1)

In addition, we need the equation of state for the ideal gas
in the isothermal case1

PðrÞ ¼
kBT

mg
rðrÞ; T ¼ const, (2)

with mg the atomic mass of one gas particle. Introducing
(2) in (1) we obtain

drðrÞ
dr
¼ �

Gmg

kBT

MðrÞrðrÞ
r2

. (3)

Mass density rðrÞ and mass distribution MðrÞ are related by

dMðrÞ

dr
¼ 4pr2rðrÞ. (4)

Together, Eqs. (3) and (4) represent a nonlinear system of
ordinary differential equations, whose solutions are un-
iquely determined given the two initial conditions MðrcÞ ¼

Mc and rðrcÞ ¼ rcs.
1Up to r � 1 � 103 kgm�3, the assumption of ideal and isothermal gas is

a valid approximation. For an extensive discussion of the applicability of

ideal gas and the isothermal assumption cf. Pečnik and Wuchterl (2005).
2. The numerical results so far and the questions they raise

The system (3), (4) has previously been examined with
numerical methods, cf. Pečnik and Wuchterl (2005),
Schönke (2005). The integration was always stopped at
the so-called Hill radius rH ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðrHÞ=3MS

3
p

, where a is
the planet’s orbital distance from the central star, MðrHÞ

the mass at the Hill radius (i.e. the total mass M tot) and MS

the mass of the star. rH approximates the region of
gravitational influence of the planet (cf. Section 4.4). Fig. 1
shows the envelope mass at the Hill radius Menv ¼

Mtot �Mc, for a variety of values of Mc and rcs
(a ¼ 5:2AU, T ¼ 123K, MS ¼M�, Rc ¼ 5500 kgm�3,
mg ¼ 3:32 � 10�27 kg (molecular hydrogen)).
We can distinguish four different regions. The crosses in

Fig. 1 mark the Mc and rcs values, for which we see a radial
density profile in Fig. 2, one for each region. The density
rðrHÞ at distance r ¼ rH from the planet connects to the
nebula density, so if we embed the planet in a certain
nebula, we have to choose the right profile. Now, we give a
very short summary of the nature of the different regions.
Region I (‘‘earth-like planets’’) has massive cores compared
to the mass of the envelope, the gravitational potential is
dominated by the core and the density decreases exponen-
tially with radius (like on earth with our atmosphere as the
envelope). Region II (‘‘gas giant planets’’) has high rcs
values, so there is so much mass in the envelope near the
core, that self-gravity of the gas sets in and forms a
compact envelope; for radii further out, the density drops
very fast to vacuum. Profile II in Fig. 2 is set constant to
log r ¼ �50 (perfect vacuum) where integration gives
smaller values. Region III (‘‘asteroids’’) has small cores,
which hardly influence the surrounding gas so that the
envelope is quasi-homogenous, i.e. rðrcÞ � rðrHÞ. Region
IV (‘‘protoplanets’’) has massive and extended envelopes,
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2The factor A is unimportant, it can always be changed to unity with the

transformation s! A1=ð1�m�lÞ ~s (if mþ la1).
3That (11) extracts the asymptotic behaviour is not obvious, it will turn

out later that it is just the case.

J. Schönke / Planetary and Space Science 55 (2007) 1299–13091302
which get self-gravitating beyond some radial distance (the
density decrease changes from exponential to 1=r2, cf. the
bend in the profile IV of Fig. 2), but are not compact yet.
At a specific rcs value, the near core parts of the envelope
become compact in a local sense, but do not influence the
whole structure.

The question is how to make a clear statement about
where the transition occurs between, e.g. region III and I.
Precisely, if we assume the border between III and I in Fig.
1 to be vertical: which minimal mass does a core need, so
we can call it an ‘‘earth-like planet’’ rather than an
‘‘asteroid’’? Another question concerns the problem where
we can find the so-called point of critical mass (O in Fig. 1),
defined to be the point where the four regions in Fig. 1
meet? This point should lie on the upper end of the border
line between III and I, of course, and its rcs should be equal
to the specific value, for which objects in IV get locally
compact near the core. But which value is it? The
procedure so far was to plot something like Fig. 1 and to
tell the points from this graphic. But this is unsatisfactory,
because we do not know what happens, if we change the
temperature or other important variables, like the orbital
distance (which will also change the temperature), the
density of the core or the atomic weight of the gas. What
happens at these border lines and at O in particular? Why
such a sudden change in the qualitative behaviour? To
answer these questions we need a new representation of the
system (3), (4) and an analytical expression for O,
depending on quantities like the above-mentioned ones.
In the following, we delineate a way to achieve these goals.

3. Mathematical preparations

This section is a rather technical part. It discusses the
transformation of the original system into an autonomous
one, i.e. a system which does not contain the independent
variable explicitly. In this form, we can represent all
solutions in terms of a phase portrait which gives us a
deeper insight into the system’s properties. The application
to the physical problem starts with Section 3.3. The reader
not interested in the mathematical reasoning may skip the
other sections.

3.1. Transformation to a generalized Emden–Fowler

equation

First, we introduce dimensionless variables

r ¼ r0x; MðrÞ ¼M�zðxÞ; rðrÞ ¼ RcyðxÞ,

where M� ¼ 5:976 � 1024 kg is the earth mass, Rc is the
mean density of the core and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M�=ð4pRcÞ

3
p

. So now,
(3) and (4) become

dy

dx
¼ �C

yz

x2
, (5)

dz

dx
¼ 3x2y, (6)
C ¼ 62=3p 1=3GM
2=3
� R1=3c mg =3kBT � 4:259 � 102ð ðRc = ½kg

m�3�Þ1=3 ðmg=½u�Þ=ðT=½K�ÞÞ, (u ¼ 1:66 � 10�27 kg (atomic
mass unit)). The transformation of the independent
variable x into a kind of ‘‘volume-like’’ variable v in the
form

v ¼ x3 ) dv ¼ 3x2 dx ¼ 3v2=3 dx, (7)

changes (5) and (6) into

dy

dv
¼ �

C

3

yz

v4=3
, (8)

dz

dv
¼ y. (9)

If we differentiate (9), z00 ¼ y0, we can introduce this into
(8) and change the system of two first-order differential
equations into one second-order equation

d2z

dv2
¼ �

C

3
v�4=3z

dz

dv
. (10)

This is a generalized Emden–Fowler equation, i.e. a special
case of €s ¼ Atnsm _sl with A; n;m; l 2 R. In our case
n ¼ �4=3, m ¼ 1, l ¼ 1 (and A ¼ �C=3),2 no analytical
solution is known so far. (For other combinations of n;m; l,
there exists information about solutions, mainly in para-
metric form. In addition, a general procedure for arbitrary
n;m; l is known, which reduces this kind of equations to an
Abel equation of the second kind, but this again is not
analytically solvable cf. Polyanin and Zaitsev (2003).)
However, a particular solution can always be given which
has no free constants of integration and describes the
asymptotic behaviour of the general solution. This solution
will play an important role in the following. More details
about generalized Emden–Fowler equations are given in
Polyanin and Zaitsev (2003).

3.2. Reduction to an autonomous dynamical system via point

transformations

To extract the asymptotic behaviour of z at large values
of v, we make the ansatz3

~z ¼ v�az; ~v ¼ ln v, (11)

where a is a free parameter. Using (11) together with

dz

dv
¼ va�1 a~zþ

d~z

d~v

� �
, (12)

d2z

dv2
¼ va�2 aða� 1Þ~zþ ð2a� 1Þ

d~z

d~v
þ

d2 ~z

d~v2

� �
, (13)

in (10), we obtain

va�2½� � �� ¼ �
C

3
v2a�7=3 a~zþ

d~z

d~v

� �
~z. (14)
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As a is a free parameter, we can choose it in such a way that
the exponents of v in (14) are equal on both sides of the
equation, i.e. demanding

a� 2 ¼ 2a� 7
3
) a ¼ 1

3
.

With (14), we have our requested autonomous equation

d2 ~z

d~v2
¼

1

3

d~z

d~v
�

C

3

d~z

d~v
~zþ

2

9
~z�

C

9
~z2. (15)

From Eq. (15), it is straightforward to construct the
autonomous dynamical system. But some care must be
taken in the choice of our second variable ~y, which is
needed to form a first-order system again. The simplest
choice, ~y ¼ d~z=d~v, would lead us to negative ~y for some y

range, as can be seen with (9) and (12). A much better
alternative, showing analogies to the z transformation (11)
(as we will see later), is

d~z

d~v
¼ ~y�

1

3
~z, (16)

)
d2 ~z

d~v2
¼

d ~y

d~v
�

1

3

d~z

d~v
¼

d ~y

d ~v
�

1

3
~yþ

1

9
~z, (17)

which keeps ~y always positive (use (9) and (12) to prove
that). Introducing (16) and (17) into (15), we get

d ~y

d~v
¼

1

3
~yð2� C ~zÞ. (18)

Eqs. (16) and (18) represent our dynamical system.
3.3. A physical approach to the problem

With the information accumulated in the last sections,
we have the opportunity to review the problem in a clear
way. We define the dimensionless quantity

jðrÞ :¼
Gmg

kBT

MðrÞ

r
, (19)

which is obviously a global gravitational potential4 divided
by the thermal energy, and

cðrÞ :¼
Gmg

kBT
4pr2rðrÞ, (20)

which is a bit more complicated to describe. With (4), we
see that c / dM=dr, which is the differential mass increase.
But c is also something else, namely a local gravitational

potential (again divided by the thermal energy). It is a
measure for the gravitational interaction of neighbouring
mass shells and therefore an indicator for self-gravity. We
will see that the whole structure of the envelope can be
understood by investigating the interplay of the two
potentials j and c. Introducing (19) and (20) into (3)
and (4) and then substituting the independent variable

s :¼ lnðr=rcÞ, (21)
4It is convenient to have j as well as c positive by definition.
we obtain

dj
ds
¼ c� j, (22)

dc
ds
¼ cð2� jÞ. (23)

The system (22), (23) has the same structure as (16), (18),
i.e. it is an autonomous dynamical system. The advantage
now is that we have a clear picture of the quantities j and
c, in contrast to ~z and ~y in the last sections (but as a matter
of fact, ~z and j or rather ~y and c are identical up to a
factor).

3.4. Connections to homology invariants

A comparison of our variables with the well-known
homology invariants U and V, given by (e.g. Kippenhahn
and Weigert, 1990)

U :¼
d lnM

d ln r
¼

4pr3r
M

, (24)

V :¼ �
d lnP

d ln r
¼

r
P

GM

r
, (25)

shows some similarity. Since we consider an ideal gas, i.e.
r=P ¼ mg=ðkBTÞ ¼ const (cf. (2)), a comparison of (24)
and (25) with (19) and (20) leads to

j ¼ V ; c ¼ UV . (26)

So j and c are homology invariants as well, because the
product UV is still an invariant quantity. In fact all
homology invariants lead (together with (21)) to autono-
mous systems of differential equations. Maintaining
homology, i.e. to ensure a kind of similarity between
different solutions of a system, requires the spatial
independence of the evolution of the invariants.
With the variables U and V we obtain a much more

complicated system than (22) and (23). Our equations
contain only one non-linearity (the term �cj in (23)),
whereas in the U � V variables we would get quadratic
terms. No combination of the invariants was found leading
to ‘‘simpler’’ expressions than (22) and (23).

4. Properties of the system

There are two important critical lines in the system (22),
(23) (the third critical line, c ¼ 0 is trivial: r ¼ 0), namely

c ¼ j ½with dj=ds ¼ 0�, (27)

j ¼ 2 ½with dc=ds ¼ 0�, (28)

describing extrema of j and c, respectively. These lines
together with the phase portrait of the system are shown in
Fig. 3. All information about the radial profiles MðrÞ as
well as rðrÞ is contained in the figure. Given initial
conditions Mc, rcs and rc (via Rc), we obtain from (19)
and (20) an initial point (jc;cc) in Fig. 3.
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Fig. 3. Phase portrait for the system (22), (23), with the critical lines

c ¼ j and j ¼ 2.
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As we are interested in positive values of j and c, the
most noticeable object in Fig. 3 is the global attractor at
the point ðj;cÞ ¼ ð2; 2Þ, which follows from dj=ds ¼

dc=ds ¼ 0 at this point, i.e. the two critical lines c ¼ j
and j ¼ 2 intersect there, and the fact that every initial
point ðj;cÞ 2 Rþ � Rþ is drawn to it for s!1 (ignoring
that we stop at the Hill radius sH / ln rH). With (19) and
(20) we see immediately that ðj;cÞ ¼ ð2; 2Þ ¼ const is
related to the profiles r / 1=r2 and M / r, which were
said to be typical for the self-gravitating, noncompact parts
of profiles in region IV (cf. Section 2). That means that all
profiles in all regions would have such a part, if their Hill
radius were not reached or they had not become compact
before. In general, every gas sphere, with or without a core,
would evolve into this asymptotic structure, for big radii.5

In these envelope parts the gas interacts with its local
vicinity only. The solution at ð2; 2Þ is the particular
solution, mentioned in Section 3.1. Our transformations
(19), (20) extracted the asymptotic behaviour r / 1=r2 and
M / r from the original variables r and M.

4.1. The critical density

The first critical line (27) describes the points where an
important event takes place: the strength of c becomes
equal to the strength of j. Introducing (19) and (20) into
(27), we get a critical density

rcritðrÞ ¼
MðrÞ

4pr3
¼
hrðrÞi
3

, (29)

where hrðrÞi denotes the mean density inside the sphere of
radius r. Whenever the local density reaches one third of
5Because of the outer boundary (Hill radius), only profiles in region IV

have this structure.
the mean density, local self-gravity has the same influence
on the gas as the total mass inside the actual sphere. For
c4j, the local self-gravity of the gas dominates the global
gravitational potential. Here, we see a fundamental
conclusion for all isothermal core–envelope configurations
in radial symmetry. Applied to the core surface, with
hrðrcÞi ¼ Rc, the critical density rcrit is nothing else but the
specific rcs value in region IV, mentioned in Section 2,
because with the local self-gravity beginning to overrule the
global potential at the core surface, we just have the
property which distinguishes between a core-gravity resp. a
self-gravity dominated core surface, which was said to be
the basic difference between planets below resp. above the
point X in Fig. 1, Section 2. Therefore rcrit is one
coordinate rO of the point X!

rO ¼
Rc
3
. (30)

The beauty of this important result arises from its
incredible simplicity! There is a specific density, for which
the gas at core surface starts to show self-gravity effects.
This critical density is reached, when it is exactly one third
of the mean density of the rigid core (which can have
arbitrary density distribution). For this transition point, we
find yet another change in the stability behaviour, as a new
instability sets in and amplifies the already existing
instability (cf. Schönke, 2005). The comparison of (30)
with isothermal numerical results shows exact agreement
(e.g. Pečnik and Wuchterl, 2005). Non-isothermal investi-
gations by Broeg (2006), including detailed EOS and
energy transfer, contain characteristic values for gas
pressure and temperature at the core surface for the
corresponding point O. Using the respective EOS,
we get the critical density at the core surface for that
point. Interestingly, this critical density has the same
value for different states, i.e. different temperatures
and pressures at the core surface (due to, e.g. different
nebula parameters). This is a clear agreement with our
result that the critical density exclusively depends on the
core density. The non-isothermal value is approximately
1000 kgm�3, whereas we get 5500

3
kgm�3 � 1800 kgm�3.

The reason for the generally smaller non-isothermal value
seems to be a non-trivial question which cannot be
answered so far.

4.2. The minimum core mass

If we define a specific, asymptotic energy

� :¼
2kBT

mg
, (31)

the second critical line (28) can be identified with (using (19))

GMðrÞ

r
¼ �. (32)

The term ‘‘asymptotic energy’’ should become clear after
looking at the asymptotic solutions of the trajectories of our
system: As we get closer to the attractor, GM=r tends towards
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Fig. 4. Example for the damped oscillation of density profiles in region

IV. The core mass is 1022 kg.
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� (i.e. j! 2). If GM=r4� (j42), a gas particle feels a
stronger force Fg ¼ �GMmgr=r3 towards the centre than in
the asymptotic case, whereas the force is lower if GM=ro�
(jo2).

Again applied to the core surface (M ¼Mc, r ¼ rc), the
condition (32) leads us to a minimum core mass

Mmin
c ¼

3

4pRc

� �1=2 �

G

� �3=2
¼

3

4pRc

� �1=2
2kBT

Gmg

� �3=2

. (33)

At a core mass of Mmin
c the envelope at the core surface

‘‘feels’’ like it is far away from the core and evolves in the
asymptotic way. Core masses smaller than Mmin

c have
practically no influence on the envelope, the gas reacts on
the ‘‘lacking potential’’ even with a small density excess at
the core surface. In general, with a value of Mmin

c , a core

starts to influence the envelope, it is the ‘‘core mass’’
analogue to rO. The counterpart of this border line,
representing Mmin

c , is not so obvious in Fig. 1 because the
plot shows the envelope mass at the Hill radius, and the
inner envelope structure is hidden in this global property.
Nevertheless Mmin

c can be found in form of the line
connecting the minima of the contour lines in region III at
logðMmin

c =M�Þ ¼ �2:85. These minima correspond to
maxima in the envelope mass Menv. For McoMmin

c ,
Menv increases with Mc due to the growing Hill radius
caused by the increasing (but not yet important) core mass.
For Mc4Mmin

c , the core forces the density to decrease
faster near the core to maintain hydrostatic equilibrium,
and Menv decreases.
6Due to the autonomous equations we ‘‘lost’’ the length scale, the

system is invariant under scaling of r.
7feff ¼ fstar þ fplanet þ fcentrifugal in the corotating system.
4.3. Oscillations in the asymptotics

The outer envelope parts of the objects in region IV are a
good example for the interplay between the potentials j
and c. An interesting feature of these envelopes, related to
the asymptotic solutions and not mentioned in Section 2, is
a damped oscillation first observed by Pečnik (2001). The
density profiles rðrÞ, e.g. are oscillating around 1=r2 and
reach it for r!1 (this can hardly be suspected from Fig.
2, the picture is too small). An example for such a density
profile in region IV is shown in Fig. 4. To discuss this
feature, we investigate the vicinity of the attractor, i.e.
perform a linearization of the phase portrait at the critical
point. The two eigenvalues of the linearized system are

l1;2 ¼ 1
2
ð�1	 i

ffiffiffi
7
p
Þ, (34)

which show us, that j and c behave like a damped
oscillator, i.e. / exp½ð�1=2	 i

ffiffiffi
7
p

=2Þs�. It means that there
is an alternating up and down of global and local
gravitational energy, as a profile evolves outwards. This
is obviously a critical situation for the envelope: it
periodically starts some kind of self-interaction (i.e. self-
gravity), but it is always a local phenomenon, instead of a
compact state (which would be global). This behaviour is a
hint that these kinds of envelopes may not be stable
objects, which has indeed been found (cf. Schönke, 2005).
Out of curiosity, we calculate the wavelength of the
oscillation. From (34), we tell the (dimensionless) wave-
number k ¼

ffiffiffi
7
p

=2 and therefore the wavelength
Ls ¼ 2p=k ¼ 4p=

ffiffiffi
7
p
� 4:75, so we get the ‘‘real’’ wave-

length Lr ¼ eLs ¼ e4p=
ffiffi
7
p

� 115, which is not a length6 but
tells us, if we started at an arbitrary radius r0, that we went
through one period after reaching 115 r0.

4.4. The Hill radius

Most of the structures in Fig. 1, like the shapes of the
different regions and their borders, discussed in Section 2,
are strongly related to the choice of the outer boundary of
the envelope. Especially the border lines between region III
and IV as well as I and III, and therefore the CCM MO,
depend on this choice, in contrast to rcrit or Mmin

c , which
are not influenced by the outer boundary, but represent
points of fundamental changes concerning the inner
structure of a core–envelope configuration. We use the
Hill radius

rHðMðrÞÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðrÞ=3MS

3
p

, (35)

as the outer boundary of the envelope. rH describes the
region of gravitational influence of the planet. In fact, it
presents the oscillating sphere of the surface where the
gradient of the effective potential7 vanishes. The key
problem of the incorporation of rH is its dependence on
MðrÞ (cf. (35)) which in turn depends on rH.

4.5. The border line between III and IV

The way to understand the border line structure of
region IV is to ask the following question: Suppose we are
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exactly at the Hill radius. If we make another radial step dr

outwards, do we get so much more mass dM, that the new
Hill radius rHðM þ dMÞ equals our new position
rHðMÞ þ dr? This borderline case defines the boundary
between region III and IV. The answer to the above
question is either ‘‘No, we get even more mass, so the new
rH is bigger than our new position’’, if we are in region IV,
or ‘‘No, we do not get enough new mass, so the new rH is
smaller than our new position’’, if we are in region III. It is
clear that this explains the sudden increase in Menv at the
boundary between the two regions: In region IV we can go
further out, because rH þ dr is still inside the new Hill
sphere, whereas in region III we have to stop, because
otherwise we would leave the region of gravitational
influence of the planet.

So we have to compare the differential mass increases at
the Hill radius. With (35), the critical increase is

dM

drH
¼

9MS

a3
r2H. (36)

The general mass increase at rH is (using (4))

dM

dr

				
rH

¼ 4pr2HrðrHÞ. (37)

To find an expression for the outer gas density rH :¼rðrHÞ,
we can take advantage of the fact that there exists
an analytic solution for the regions I and III, which is a
perfect approximation, as long as we stay out of region II
or IV. As a matter of fact, we use an approximation to find
out where the approximation itself breaks down! As in
region I and III the core mass is always at least a
hundred times larger than the envelope’s mass, we can
say that the mass is constant and equal to the core mass.
This procedure, known as the Roche approximation,
simplifies (3) to

drðrÞ
dr
¼ �

Gmg

kBT

McrðrÞ
r2

, (38)

which can be integrated easily

rðrÞ ¼ rcs exp
GmgMc

kBT

1

r
�

1

rc

� �� �
,

rH :¼rðrHÞ ¼ rcs exp
GmgMc

kBT

1

rH
�

1

rc

� �� �
.

After eliminating rc and rH we get8

rH ¼ rcs exp
Gmg

kBT

ð3MSÞ
1=3

a
�

4pRc
3

� �1=3
" #

M2=3
c

 !
. (39)

If we introduce (39) into (37) and then equate (36) and (37),
we find

9MS

a3
¼ 4prcs exp

Gmg

kBT

ð3MSÞ
1=3

a
�

4pRc
3

� �1=3
" #

M2=3
c

 !
,

8If a40:1AU (with MS ¼M�, Rc ¼ R�), then rHbrc and the term

ð3MSÞ
1=3=a is negligible in all the forthcoming formulas.
and the border line between region III and IV to be

rIII;IVcs ðMcÞ ¼
9MS

4pa3
exp

Gmg

kBT

4pRc
3

� �1=3

�
ð3MSÞ

1=3

a

" #
M2=3

c

 !
.

(40)

For Mc! 0 we get the critical central density of a gas
sphere, above which it can build up an extensive envelope

r̄ :¼rIII;IVcs ðMc ! 0Þ ¼
9MS

4pa3
, (41)

which is called r̄, because it is the mean density hrðrHÞi of
an object, cf. (29) and (35) (all models have the same r̄ for
fixed a and MS). It is also the highest possible outer density
of any envelope. Actually, the outer density equals r̄ for
every point on the border line of region IV (towards region
III and region II) in the approximation (38). There are no
static solutions for outer densities higher than r̄, therefore
r̄ is a critical nebula density, a density analogue to the
CCM.

4.6. The critical core mass

With the knowledge of the critical density at the core
surface rO (cf. Section 4.1), it is now straightforward to
calculate the CCM MO with the help of (40). We just need
to ask for the Mc value where the borderline between III
and IV crosses the critical density rO, i.e. we have to solve
the equation rIII;IVcs ðMOÞ ¼ rO ¼ Rc=3, giving

MO ¼

kBT

Gmg
ln

4pa3Rc
27MS

� �
4pRc
3

� �1=3

�
ð3MSÞ

1=3

a

0
BBB@

1
CCCA

3=2

. (42)

With MO we found the second and final coordinate of the
point of critical mass O! We can think of MO as the end of
a process, which began with the minimum core mass. At
Mmin

c the core started to influence the envelope near the
core, whereas at MO the core interacts with the whole
envelope up to the Hill radius. For the parameters like in
Fig. 1, we get a CCM of logðMO=M�Þ � �1:17, in
excellent agreement to numerical results from other
isothermal investigations (Pečnik and Wuchterl, 2005).
The obvious discrepancy to non-isothermal publications
(Mizuno, 1980; Ikoma et al., 2001), which give values up to
the order of 10M�, has three main reasons. As mentioned
before, MO is the global CCM, i.e. the CCM for the highest
possible outer density r̄ and therefore the minimum CCM
value for all possible nebula densities (cf. Introduction).
But if we look into Fig. 1 in Ikoma et al. (2001), we can
actually find the respective MO value. There, the classical
CCM is shown at 0.1AU for different nebula densities up
to 1000rH0 � 0:67 kgm�3 (rH0 is the MMSN density,
Hayashi et al., 1985) which is close to but already above
the (isothermal) maximum outer density of r̄ ¼ 0:42 kgm�3

at that orbital distance (cf. (41)). For 1000rH0 , i.e. the very
right end of the graph, the CCM is given as
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Fig. 5. Summary of the characteristic quantities, discussed in the previous

sections, shown in the Mc � rcs parameter space (cf. Fig. 1).
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Mcrit
c � 0:55M�, where (42) with the respective parameters

gives MO ¼ 0:38M�, which is not such a big deviation
anymore. The second reason for the still remaining
difference is of course the isothermal assumption giving
naturally smaller values for the CCM because the constant
temperature is certainly a lower limit for the planet
especially in the high density parts close to the core.
Upcoming analytic investigations with polytropic relations
(to be published soon) will show significantly increased
values for MO. Last but not least there are deviations due
to non-ideal effects of the gas not considered in this article.

4.7. The border line between I and III

As we mentioned before, MO also represents the border
line between the regions I and III, i.e.

MI;III
c ¼MO, (43)

so an object with Mc4MO can be called an ‘‘earth-like
planet’’ and its core holds the envelope in a ‘‘firm grip’’. If
we define a density contrast

d :¼
rcs
rH

, (44)

we see with (39) that in region I and III, d is constant for a
constant core mass. At Mc ¼MO, we find

dO ¼
4pa3Rc
27MS

¼
rO
r̄
. (45)

Therefore, the ability to keep an atmosphere when the
nebula is removed can also be described with a minimum
density contrast of dO. If dodO, we have just an ‘‘asteroid’’.
9If abð9MS=4pRcÞ
1=3, then CbD and D can be neglected.
4.8. Properties of region IV

Profiles in region IV end up at ðj;cÞ ¼ ð2; 2Þ sooner or
later, as we mentioned before. The total mass and the outer
density do not vary much in the whole region, as can be
seen in Fig. 1. If we evaluate (19) and (20) for ðj;cÞ ¼ ð2; 2Þ
at r ¼ rH, we obtain the mean values for Menv (the height
of the ‘‘island’’ in Fig. 1) and rH in region IV

hMIV
envi ¼

2kBTa

Gmg

� �3=2

ð3MSÞ
�1=2, (46)

hrIVH i ¼
3MS

4pa3
¼

r̄
3
. (47)

These values are exact at the point ðMc;rcsÞ ¼ ðM
min
c ;rOÞ,

of course. The results are still correct for non-isothermal
planets if only the outermost envelope parts are isothermal,
as comparisons with Broeg (2006) show. The temperature
to be inserted in (46) is then of course the one from the
isothermal outer part, i.e. the nebula temperature. An
interesting fact is that hrIVH i corresponds to the ‘‘mean
density inside the orbit’’ (MS distributed over a sphere with
radius a), yet another property of the asymptotic solutions.
4.9. A brief summary of the formulas

For an overall review, Fig. 5 collects the important
quantities calculated so far. A comparison of its lines and
points to the numerically computed structures in Fig. 1
shows excellent agreement. Using the abbreviations
C :¼ð4pRc=3Þ

1=3 and D :¼ð3MSÞ
1=3=a ¼ ð4pr̄=3Þ1=3 and

E :¼ kBT=ðGmgÞ we can summarize the derived formulas9

rO ¼
Rc
3
,

r̄ ¼
9MS

4pa3
,

Mmin
c ¼

2E

C

� �3=2

,

MO ¼
E

C �D
ln

rO
r̄

� �� �3=2
,

rIII;IVcs ðMcÞ ¼ r̄ exp
C �D

E
M2=3

c

� �
.

4.10. Dependence of the critical core mass on the orbital

distance

It is interesting to investigate the dependence of MO on
the different parameters, especially the orbital distance a,
because it usually changes the temperature, too. If we use a
common temperature model for a solar nebula, e.g. by
Hayashi et al. (1985)

T

½K �
¼ 280

L

½L��

� �1=4
a

½AU�

� ��1=2
, (48)
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Fig. 6. The critical core mass MO (thick lines) and the minimal core mass

Mmin
c (thin lines) as functions of orbital distance for two different

molecular weights. The temperature dependence TðaÞ is assumed to be

(48). The molecular weight is just shifting the functions (cf. (42) and (33)).
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with L as the luminosity of the central star, we can
eliminate T and get a relation MOðaÞ / a�3=4½lnðk aÞ�3=2

with a constant k depending on MS and Rc (cf. (42)). MOðaÞ

and Mmin
c ðaÞ are shown in Fig. 6 for two molecular weights

(and L ¼ L�, other parameters like in Fig. 1). For
logða0=½AU�Þ � �2:07, MO equals Mmin

c . This happens
because due to the decreasing orbital distance, r̄ increases
and gets close to rO, the needed density contrast at the
CCM becomes very small (dO � 1) and so does MO. In
contrast the minimum core mass increases continuously
with decreasing orbital distance (or increasing tempera-
ture). For aoa0 it is not possible to dominate an envelope
with the core potential alone. Only compact objects (e.g. in
region II with rcs4rO) keep their envelopes when the
nebula vanishes.

5. Conclusions

We investigated an isothermal core–envelope structure in
radial symmetry as a model for a planet embedded in a
nebula around a star. The underlying system of differential
equations was transformed into an autonomous one, so we
were able to represent a great variety of different solutions,
i.e. radial profiles for mass and density, in a two-
dimensional phase portrait with the trajectories as the
solutions. This phase portrait is dissipative and contains a
point attractor, so all trajectories tend towards the same
limit. Thus all radial profiles exhibit an asymptotic
‘‘singular profile’’ for r!1, which has the form r /
1=r2 or rather M / r.

The transformed variables represent two kinds of
gravitational potentials, one is the global potential j and
the other one is the local potential c describing self-gravity.
The properties of the interplay between j and c contain a
lot of useful information.
An important result is the critical gas density above
which self-gravity effects overrule the global gravitational
potential. This happens when the local density is one third
of the mean density inside the actual sphere. At the core
surface this corresponds to one third of the mean core
density and therefore gives us the density value rO of the
point of critical mass. If the gas density at the core is higher
than rO, self-gravity starts to influence the envelope in a
global way. For the core mass we found the analogue to rO
in the minimal core mass Mmin

c . Cores more massive than
Mmin

c have a significant influence on the envelope.
Given a boundary for the region of gravitational

influence in form of the Hill radius, we found the CCM
MO, marking the point where the core potential influences
the whole Hill sphere. In the evolution of the protoplane-
tary disk, the value of MO decides whether or not a planet
is able to retain its gaseous envelope as the disk gas
vanishes. Planets with cores above MO will keep their
envelope, while others will not (if not compact through
self-gravity). The gas density analogue to MO is the border
line between region II and IV. As this line is not vertical, cf.
Fig. 1, the critical gas density at the core surface, which
ensures the transition to a compact state (i.e. entering
region II), depends on the core mass. The bigger the core
the smaller is the needed gas density (the core ‘‘supports’’
the compactification process).
The formulas derived for rO and MO describe the point of

critical mass and therefore the important point where there
are no more static states of the envelope in general and no
more core growth driven, quasi-static evolution is possible.
The investigation of the behaviour of mass profiles MðrÞ at

the Hill radius led us to an explicit expression rcsðMcÞ of the
border line between ‘‘asteroids’’ in region III and ‘‘proto-
planets’’ with extensive envelopes in region IV. For vanishing
core mass, this relation gives the critical central density of a
gas sphere, above which extensive envelopes are built up.
With the help of the asymptotic solutions we were able to

determine the mean values of envelope mass and outer
density for region IV. These quantities are quite constant
there, because for r! rH all profiles reach the unique
asymptotic solution. Minor variations in the quantities at
rH are due to damped oscillations of the profiles near the
asymptotic solution. These oscillations were investigated
through linearization of the vicinity of the attractor in the
phase portrait, including the calculation of the eigenvalues
and the determination of the typical wavelength.
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