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Electrodiffusion Models of Neurons and Extracellular Space Using the
Poisson-Nernst-Planck Equations—Numerical Simulation of the Intra-
and Extracellular Potential for an Axon Model
Jurgis Pods,†‡* Johannes Schönke,†‡ and Peter Bastian†‡
†Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany; and ‡Bernstein Center for Computational
Neuroscience Heidelberg-Mannheim, Mannheim, Germany
ABSTRACT In neurophysiology, extracellular signals—as measured by local field potentials (LFP) or electroencephalog-
raphy—are of great significance. Their exact biophysical basis is, however, still not fully understood. We present a three-
dimensional model exploiting the cylinder symmetry of a single axon in extracellular fluid based on the Poisson-Nernst-Planck
equations of electrodiffusion. The propagation of an action potential along the axonal membrane is investigated by means of
numerical simulations. Special attention is paid to the Debye layer, the region with strong concentration gradients close to
the membrane, which is explicitly resolved by the computational mesh. We focus on the evolution of the extracellular electric
potential. A characteristic up-down-up LFP waveform in the far-field is found. Close to the membrane, the potential shows a
more intricate shape. A comparison with the widely used line source approximation reveals similarities and demonstrates the
strong influence of membrane currents. However, the electrodiffusion model shows another signal component stemming directly
from the intracellular electric field, called the action potential echo. Depending on the neuronal configuration, this might have a
significant effect on the LFP. In these situations, electrodiffusion models should be used for quantitative comparisons with
experimental data.
INTRODUCTION
Simulations of neuronal signal propagation have a long
history and are well established in neuroscience as a useful
tool to study brain function. Most models today are based on
the seminal work of Hodgkin and Huxley (1) for the mem-
brane currents and the application of cable theory (2) to
account for the neuron morphology. Among the most
well-known simulators for these kinds of models are
NEURON (3) and GENESIS (4).

Although experimental setups with intracellular re-
cordings can readily be replicated by compartment models,
extracellular measurements—an important tool in neuro-
physiology to study multiunit and network activity—cannot
be included directly.

There are models for obtaining the extracellular field of a
neuron that are based on the membrane current source
density (5,6), based on the line source approximation
(LSA) (7), which account for effects like frequency filtering
of a complex extracellular space (8,9). In Pettersen et al.
(10), an inverse method was applied to estimate current
source densities from extracellular potentials. In these
models, the relevant parameters for the extracellular
medium are conductivity and permittivity. The problem is
reduced to the solution of the electrostatic part of Maxwell’s
equations, where the membrane is the only current source.
The local changes in ion concentrations caused by drift
and diffusion and their contribution to the electric field are
not considered.
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In Lopreore et al. (11), a detailed three-dimensional
numerical simulation of electrodiffusion has been carried
out for the node of Ranvier, showing the accumulation
and depletion of ions close to the membrane, and therefore
the invalidity of the electroneutrality approximation close to
the membrane, as used in cable equation models. The study
focused on deviations from the cable equation, not on the
extracellular signal. However, the membrane thickness
was greatly overestimated in this study as a consequence
of the coarseness of the spatial discretization, presumably
dictated by the available computational resources.

In Mori (12), the reason for the high computational
demand of electrodiffusion models based on the Poisson-
Nernst-Planck (PNP) equations is discussed: The presence
of a Debye layer close to the membrane—over which con-
centrations change significantly—necessitates a fine spatial
resolution. A clever approximation is suggested that repre-
sents the Debye layer as a charge density boundary condi-
tion. In Mori et al. (13), this methodology was applied to
study the effect of gap junction conductances on cardiac
action potential (AP) propagation.

A recent study (14) investigated the AP propagation in a
reconstructed three-dimensional axonal structure intra-
cellularly. Numerical methods for electrodiffusion-reaction
equations were analyzed in a comprehensive way in Lu
et al. (15), with special regard to surface potentials of
biomolecules.

To our knowledge, a model does not yet exist that ex-
plicitly resolves the Debye layer to study membrane
dynamics following neuronal excitation on the detailed level
of electrodiffusion.
http://dx.doi.org/10.1016/j.bpj.2013.05.041
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In this work, we model the detailed evolution of the con-
centrations of the most relevant ion species and the resulting
electric field inside and (particularly) outside the cell during
the spread of an AP along an axonal membrane. To this end,
the Poisson-Nernst-Planck equations are solved numerically
by application of the finite element method. We propose an
efficient numerical scheme to tackle the computational
demand by using a suitable spatial grid that resolves the
multiple spatial scales accurately while still using only a
minimal number of unknowns.

We strive to elucidate how the complex interaction of ion
movements explains the evolution of the extracellular
signal. Finally, we compare our results with the LSA model
and explain the observed differences in signal shape.
THEORY AND METHODS

The Poisson-Nernst-Planck equations of
electrodiffusion

The PNP system describes the movement of ions in a static solvent due to

diffusion and electrostatic drift. It consists of the Nernst-Planck equation

vni
vt

þ V$Fi ¼ 0; (1a)

with the ion flux

Fi ¼ �DiðVni þ ziniVfÞ ; (1b)

and the Poisson equation

V$ðeVfÞ ¼ �e2n�

e0kT

X
i

zini: (2)

The ni, i ¼ 1,., N, are relative concentrations (with respect to a scaling

concentration n* ¼ NA, equal to the Avogadro constant) with units in

millimolar for the N different ion species; zi is the valence; Di is the
position-dependent diffusion coefficient of the ion species i; f is the

dimensionless relative electric potential energy with respect to the thermal

energy (f ¼ eU/kT) with U in volts; for room temperature, f ¼ 1 corre-

sponds to ~25 mV; ε is the relative permittivity (which again may be

position-dependent); and T is the temperature of the solvent.

Equation 1 describes the time-dependent change in concentrations due to

diffusion and drift through an electrical field. Equation 2 gives the electric

potential f at any point in space. We now use the PNP system to set up a

detailed model of an axon in an extracellular medium.
A three-dimensional model of axonal membrane
and extracellular space

Our simulation model focuses on the axonal part of the neuron. Here, we are

especially interested in the membrane dynamics and its effects on the extra-

cellular signal. As the solution of a full three-dimensional system is compu-

tationally expensive, we use a cylindrical coordinate system. Exploiting the

rotational symmetry of an idealized axon, the computational domain can be

reduced to two dimensions, as there is no change in angular direction. This

enables us to calculate valid three-dimensional results with a drastically

reduced computational complexity. For the numerical solution, the

rectangular elements will be treated as (hollow) cylinders and the volumes

calculated accordingly. In the following, the two-dimensional geometry

will be used for illustration purposes, while implicitly meaning the cylin-

drical geometry.

In the upper part of Fig. 1, the cylindrical geometry is shown with the

two-dimensional subset highlighted, constituting the effective computa-

tional domain. The x axis represents the domain’s symmetry axis, elimi-

nating the angular coordinate q from the equations. The domain consists

of three partitions: Cytosol, membrane, and extracellular space. Cytosol

and extracellular space are electrolytes, yielding the electrolyte domain

Uelec. It may contain an arbitrary number N of concentrations of different

ion species. Here, however, we will restrict ourselves to the minimal set

of N ¼ 3 monovalent species sodium (Naþ), potassium (Kþ), and chloride

(Cl�). Sodium and potassium are needed for the ion channel dynamics

triggering an action potential; chloride is a representative of the anions

needed for electroneutrality in the bulk solution and does not cross the

membrane in this model.

The membrane domain Umemb separates the two parts of the electrolyte

domain; therefore, Uelec is not connected. This setup necessitates the intro-

duction of additional boundary conditions on the membrane-electrolyte-

interface Gint next to obligatory boundary conditions on the domain
FIGURE 1 The two-dimensional computational

domain for the cylinder symmetric axon model.

The upper part shows the cylinder geometry into

which the two-dimensional computational grid is

embedded, assuming symmetry in the angular

direction. (Lower part, solid lines) Domain bound-

ary Gex. (Lower part, dashed lines) Interior (elec-

trolyte-membrane) boundary Gint. This divides

the domain into the (unconnected) electrolyte

domain Uelec ¼ U
ðCYÞ
elec WU

ðESÞ
elec and the separating

membrane Umemb domains. The Debye layer of

U
ðESÞ
elec close to the membrane is highlighted

(shading), followed by the near-field and far-field

parts. The lower boundary represents the inner-

cell symmetry axis. Note that this scheme is not

to scale, as the actual mesh sizes in y direction

differ by several orders of magnitude between the

Debye layer and far-field making the grid very

anisotropic.
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boundary Gext, such that the set of all boundary points is given by G ¼
Gint X Gext. The measures Uelec and Umemb form a partition of the com-

putational domain: U ¼ UelecWUmemb.

With this multidomain setup, we now have the Nernst-Planck expression

from Eq. 1 defined on Uelec and boundary conditions as

Fi , n ¼ jNP on Gext;NWGint; (3a)

ni ¼ gNP on Gext;D; (3b)
and the Poisson expression from Eq. 2 defined on the whole domain U with

boundary conditions as

eVf , n ¼ jP on Gext;N; (4a)

f ¼ gP on Gext;D; (4b)
where n denotes the unit outer normal and G,,D and G,,N denote

Dirichlet and Neumann boundaries, respectively. For consistency, of course

Gext,N W Gext,D ¼ Gext holds.

Equations 1 and 2 are obviously defined on different domains. The

Poisson equation is defined on the whole domain, whereas the Nernst-

Planck equation is only defined on the electrolyte subdomain. This means

we assume the membrane to be free of mobile charge carriers for simplicity.

Membrane surface charges could easily be added as an additional source

term in the Poisson equation, but are not included here.

As can be seen in Fig. 1, the exterior boundary Gext ¼
Gbottom
ext WGleft

extWG
right
ext WG

top
ext consists of four parts, and the interior boundary

Gint of two nonconnected parts.

For the boundary conditions of Eqs. 3a, 3b, 4a, and 4b, we use

jNP ¼
�
f memb
i ðni;f; tÞ on ¼ Gint

0 on Gext;N ¼ GextyGtop
ext

;

gNP ¼ n0 on Gext;D ¼ Gtop;
i ext

jP ¼ 0 on Gext;N ¼ GextyGtop;
ext

gP ¼ 0 on Gext;D ¼ Gtop
ext ;
where we call the constant ni
0 the bulk concentration of species i. The

membrane flux fi
memb is defined in the next section. The Dirichlet

boundary conditions for the concentrations on the upper exterior boundary

serve to model an infinite reservoir for each ion species. The potential is

clamped to zero at the upper extracellular boundary, which introduces an

error equal to the value of the real potential value bfðymaxÞ calculated for

an unrestricted domain (potential is 0 at infinity). For a point charge on

the membrane, this error would correspond to an absolute shift at each

point in the domain. Because the potential of a point charge falls off as

1/r in three dimensions, increasing the domain size by a factor 100

will reduce the error at a fixed point by a factor 1/100. For a finite line

charge (as in our case of an active membrane), this is only true if the

radial distance is large compared to the length of the line charge (compare

to LSA, e.g., in Gold et al. (5)). In any case, increasing the domain size in

the y direction will reduce the error introduced by the upper Dirichlet

boundary. We chose a sufficiently large domain size of ymax ¼ 10 mm

to account for this.

At the lower boundary representing the intracellular symmetry axis, the

potential gradient and ion fluxes are vanishing such that no boundary

artifacts are introduced.
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Membrane flux

The membrane flux boundary conditions are taken from an effective model

of ion channel currents. Given the time- and potential-dependent channel

conductances gi(f,t) from the Hodgkin-Huxley scheme (1)—here we use

the version from Koch (16), see the Supporting Material for details—the

total conductance for each ion species is given by

gK ¼ gKv
þ gKL

; (5a)

gNa ¼ gNav þ gNaL ; (5b)
gCl ¼ 0; (5c)
with voltage-gated conductances gKv
, gNav and fixed leak conductances gKL

and gNaL .
For the definition of the membrane flux, each point x ˛ GCY

int on the

cytosol-membrane interface is mapped to a point m(x) ˛ GES
int on the

opposite membrane-extracellular space interface by a map m(x) ¼ x þ
dmemb , n, where dmemb is the membrane thickness and n is in this case

the unit outer normal at x pointing in the direction from cytosol to

membrane. The values of potential and concentrations evaluated at these

points are called fCY ¼ f(x), ni
CY ¼ ni(x), f

ES ¼ f(m(x)), and ni
ES ¼

ni(m(x)). With these values on both sides of the membrane, the con-

centration-, potential-, and time-dependent membrane flux fi
memb of species

i ˛ {Na, K, Cl}is defined as

f memb
i ðxÞ ¼ f memb

i ðmðxÞÞ ¼ giðf; tÞ kT

e2z2n�

�
z½f� þ ln

nESi
nCYi

�
;

(6)

where [f] denotes the potential jump across the membrane, i.e., [f] ¼
fCY � fES. Note that two opposite points on the membrane interface are

identified with each other here, i.e., the membrane thickness is essentially

neglected.

The flux was derived from the Hodgkin-Huxley membrane current

Iimemb ¼ gi(f,t)([U] – E) by replacing the constant battery E by a variable

concentration-dependent reversal potential calculated from the Nernst

equation (see below) and adding necessary scaling factors to bring fi
memb ¼

Ii
memb/ezn* to SI units mol/m2 s. This interior boundary condition fits nicely

into our framework, as it unifies the potential-dependent Hodgkin-Huxley

system with the concentration-dependent Nernst equation to arrive at an

expression that represents all the features of the potential- and concentra-

tion-dependent ion flux Fi of the PNP system.

Equilibrium states

The system’s steady state is equivalent to the neuronal resting state. The

equilibrium membrane potential can be easily validated: For one ion

species, the Nernst equation

E ¼ RT

zF
ln

nES

nCY
(7)

gives the potential jump across the membrane.

The Goldman equation usually employed to calculate a neuron’s resting

potential is based on the assumption that the two electrolytes separated by

the membrane are bulk solutions, i.e., the ion concentrations are constant

and only change within the membrane. As our model is based on the oppo-

site assumptions—there are no ions within the membrane, but nonzero ion

fluxes in the neighboring electrolytes—the Goldman equation cannot be

used to validate the equilibrium state of our model.
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The model is initialized by setting the ion concentrations within

one electrolyte domain uniformly to their intra- and extracellular bulk

values ni
0 (see Table S1 in the Supporting Material). The bulk

concentrations are chosen such that each electrolyte initially is elec-

troneutral, i.e., the net charge is zero, which is a reasonable assumption

both physically and biologically with respect to energy minimization

principles.

To generate the resting state, the membrane leak channels are opened.

The active channels stay closed during the equilibration phase. After

some time (in the range of tens of milliseconds), an equilibrium state will

establish with a net zero membrane flux and the concentrations following

a Boltzmann distribution.

The Poisson-Boltzmann equation

V$ðeVfÞ ¼ �e2n�

e0kT

X
i

zin
0
i expð�zifÞ (8)

predicts the concentration profile at equilibrium state. This equation will be

used for validation of the simulation later on, it is not explicitly used in the

algorithm.
Numerical methods

Finite element discretization

We use a finite element approach using the continuous Galerkin method to

solve the equations stated in The Poisson-Nernst-Planck Equations of

Electrodiffusion. Multiplying by test functions v, integrating over the

domain and applying integration by parts, we obtain the weak formulation

of the equations in residual formulation.

For the Nernst-Planck equation, the temporal part

RNP;T ¼
Z

Uelec

niv dt i ¼ 1;.;N (9a)

and the spatial part

RNP;S ¼
Z

Uelec

DiðVni þ ziniVfÞ$Vv dxþ
Z
GN

jNPv dx i

¼ 1;.;N

(9b)

are combined, yielding

RNP ¼ RNP;T þ RNP;S: (9c)

For the Poisson equation, we get

RP ¼
Z
U

�eVf$vþ
 
e2n�

e0kT

X
i

zini

!
v dxþ

Z
GN

jPv dx; (10)

and, therefore, the residual for the full system reads

R ¼
�
RNP

RP

�
: (11)

By applying the method of lines, each equation is discretized in space first

by representing the unknown functions ni and f as well as the test functions

v by Q1 nodal basis functions on a tensor grid, and then in time using the
implicit Euler time-stepping scheme. As suggested in Fig. 1, the grid is

refined toward the membrane in the y direction. This is essential to resolve

the Debye length, the characteristic length scale over which the electrolyte

ion concentrations deviate significantly from their bulk values close to the

membrane. In the x direction, the grid is equidistant (dx¼ 100 mm); in the y

direction, it ranges from dymin ¼ 0.5 nm over the Debye layer to dymax ¼
100 mm, resulting in a very anisotropic grid.

It can easily be seen that each equation alone is linear in its unknowns.

One could therefore use an operator-split approach and solve the equations

alternately until convergence in each time step. We observed that a very

small time step (on the order of nanoseconds) is necessary to solve the

system this way.

Because the nonlinearity of the whole system results from the coupling of

both equations, it seems reasonable to represent this crucial feature in the

numerical method. The system is therefore solved fully coupled using

Newton’s method, requiring the solution of one single linear system in

each iteration. For small systems, SuperLU (17) was used; for larger

systems with >50,000 unknowns, a stabilized BiConjugate Gradient

iterative solver, preconditioned by an inexact LU decomposition, turned

out to be faster while maintaining the same accuracy. We observe a signif-

icantly higher stability leading to possible time steps of approximately tens

of microseconds for the fully coupled approach.

The cylinder symmetry introduces another subtle difficulty for the

numerical treatment of the system. Because the cell volumes increase in

the positive y direction (roughly with y dy), the entries of the full residual

R differ by several orders of magnitude (109 for the chosen domain size

of 10 mm) solely by the presence of volume integrals in the weak form

of the equations. We apply a threshold volume scaling to account for

this: At a certain distance from the membrane, a reference volume Vref is

calculated. All residuals belonging to an unknown at node i having

a volume Vi > Vref, where Vi is the minimum volume of all adjacent cells

of node i, are scaled by a factor Vref/Vi. This mathematically corresponds

to multiplying a diagonal matrix from left to the linear system matrix,

meaning that the same linear system is solved in each Newton iteration.

This scaling greatly increases the convergence properties of the Newton

algorithm for this cylinder geometry setup.

Adaptive time-stepping

As the system has a great variability during the course of an action

potential, a small time step is needed to capture the large fluxes and

potential differences during this period. On the other hand, potential

differences during interspike intervals are small and so are the

magnitudes of ion fluxes, allowing for the use of a larger time step.

Therefore, an adaptive time-stepping strategy is used to speed up the

simulation by controlling the time-step dt depending on the dynamics

of the system.

The time step is bounded by a minimum time step of tmin ¼ 0.05 ms and a

maximum time step of tmax ¼ 50 ms. During an action potential (membrane

potential EM > �50 mV) or when an external stimulation is present, the

maximum time step is limited to tmax,AP ¼ 10 ms.

The change of the time step depends on the number of Newton iterations

itk needed to complete the previous time-step k:

dtkþ1 ¼
8<: dtk � 1:1 itk<10^itk%itk�1

dtk=1:2 itk>30
dtk else:

(12)

Coupling with the Hodgkin-Huxley equations

As described in the section Membrane Flux, the dynamic channel conduc-

tances from the Hodgkin-Huxley scheme are needed to calculate the total

membrane flux fi
memb. For each channel type i, one additional ordinary dif-

ferential equation per gating particle has to be solved in each time step. This

is done using a simple Implicit Euler step. The membrane flux is calculated
Biophysical Journal 105(1) 242–254
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once at the beginning of each time step and kept fixed for the whole Newton

iteration. This way, the unknowns from the HH scheme do not enter the

matrix for the PNP system, avoiding convergence issues arising from

changing boundary conditions. However, this introduces a small splitting

error of O(dt).
Implementation

The implementation was done in Cþþ using the DUNE framework (18,19)

and the DUNE discretization module PDELab (20). Additionally, the

DUNE modules dune-multidomaingrid (21) and dune-multidomain (22)

were used. The dune-multidomaingrid provides a metagrid that allows for

the partition of the grid into subdomains (Uelec and Umemb, in this case);

dune-multidomain is an add-on to PDELab that lets the user define different

operators on different subdomains and specify coupling between subdo-

mains. In other words, different equations can be solved on different parts

of the grid, which is a highly suitable tool for our case of a nonlinearly

coupled system of PDEs defined on different domains.

Essentially, there has to be one operator for the assembly of the residual

expressions from Eqs. 9a, 9b, and 10. To couple Eqs. 1 and 2, however, the

residuals for the spatial part of the subdomainUelec are treated together by a

single operator assembling the combined residual

RUelec
¼
�

RNP;S

RP;Uelec

�
:

Here, RP;Uelec
denotes those entries of the full Poisson residual Rp that comes

from elements belonging to the Uelec subdomain.

The remaining entries RP;Umemb
of the full Poisson residual are assembled

by a separate operator taking only contributions from the subdomain Umemb

into account.

A third operator handles the temporal part of the residual, RNP,T. A com-

bined operator is obtained automatically by the DUNE module dune-

multidomain, which can be used by PDELab’s Newton implementation to

assemble the full residual to be minimized in each iteration.
RESULTS

Validation by analytical solutions

To test the numerical algorithms and to validate the imple-
mentation, a number of simulations have been run and
compared to analytical solutions. We used recently found
unsteady analytical solutions to the PNP equations (23)
for the case of a single electrolyte domain. The comparisons
in one and two spatial dimensions showed the expected
order of convergence in space and time (regarding our
numerical implementation) to the exact solutions.
Simulation parameters

In the following, we consider a square computational
domain of dimension 10 � 10 mm, where the membrane
ranges from ymemb ¼ 500 ms to ymemb þ dmemb, and the
membrane thickness was chosen to be dmemb ¼ 5 nm.

For the mesh width, a uniform spacing of hx ¼ 100 mm
was used in the x direction. The Debye length for this elec-
trolyte setup is ~0.8 nm, so we chose a minimum grid
spacing of hy

min¼ 0.5 nm at the membrane in the y direction
to account for this. A geometric spacing was used, smoothly
Biophysical Journal 105(1) 242–254
increasing the grid spacing in the y direction with increasing
distance from the membrane boundary to a maximum of
hy

max ¼ 100 mm. The large difference between these lengths
underlines the multiscale character of this model.

The diffusion coefficients Di were chosen to be the diffu-
sivity in water for each ion species. The relative permittivity
ε was 80 in the electrolytes and 2 on the membrane, in
accordance with Lu et al. (15). The temperature was fixed
at T ¼ 6.3�C. Table S1, Table S2, and Table S3 contain
the values chosen for initial concentrations and channel
parameters.

For these simulation parameters with 73,124 unknowns
and a simulated time of 20 ms, and using an average time-
step size of 13.65 ms, a total computation time of ~25 h
was needed.
Equilibrium

When selectively opening only the leak channels for one ion
species, the system’s equilibrium membrane potential is
expected to be equal to the corresponding ionic reversal
potential, as predicted by Eq. 7. Table S3 shows the calcu-
lated equilibrium potentials, which indeed match the value
calculated by Nernst’s equation.

When opening both Na and K leak channels, the equilib-
rium membrane potential will reach a value lying between
the two channels’ reversal potentials. The relative leak con-
ductances that result in a resting potential of ~�65 mV
can be found in Table S3. The total leak conductance
(0.5 mS/cm2) was always kept constant.

Fig. S1 in the Supporting Material shows the intra- and
extracellular charge density profile at equilibrium. As
predicted by the Poisson-Boltzmann expression in Eq. 8,
both electrolytes adjust their concentrations to follow a
Boltzmann distribution toward the membrane. Fig. S2
shows the evolution of membrane fluxes during the equili-
bration phase. The sum of inward- and outward-directed
fluxes tends to zero, marking the neuron’s resting state.
Action potential

Membrane potential

To evoke an action potential (AP), a sodium rectangle pulse
of 0.965 nA is injected into the cell by adding a fixed
amount of sodium at the stimulation site xstim ¼ (150 mm,
0 mm) for 2 ms. Due to the ion channel kinetics from
Coupling with the Hodgkin-Huxley Equations section, a
potential wave travels along the axon, opening more chan-
nels along the way and keeping the AP alive. The conduc-
tance velocity is depending on the time constants of the
ion channel kinetics, but also on the intra- and extracellular
ion diffusion coefficients, and had a value of ~0.93 m/s for
this setup. Fig. 2 shows the potential time courses at
different positions along the axon. The first AP has a higher
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amplitude than the following APs, caused by the
proximity to the stimulation site. Also, switching off the
stimulus is reflected by an artifact in the repolarization
phase of the first AP. In Movie S1 in the Supporting
Material, the AP propagation along the axon in space and
time can be seen.

Extracellular potential

We now focus on the time evolution of local field potential
(LFP) signals at any point in the extracellular domain. In
Fig. 3, the potential time courses are plotted for the same
x coordinate, at increasing distances from the membrane.
Some major features can be identified from these curves:
A first positive peak (P1) followed by a larger negative
peak (N1), then a (very) small second positive peak (P2)
with a subsequent longer phase of slowly varying potential
with negative curvature (S), and a last peak (P3). This
characteristic up-down-up shape is maintained at various
distances from the membrane. The potential time course
after P1 seems to largely follow the total membrane flux
at the same x coordinate (Fig. 4), in accordance with the
LSA model. However, the small positive deflection at the
beginning of the membrane flux curve alone cannot explain
the large amplitude (comparable in magnitude to N1) of P1.
We will now try to explain this difference by looking at
snapshots of the extracellular potential and ion concen-
trations at a fixed time point. Because during an AP this
profile simply moves through space with a constant (known)
velocity (~0.93 m/s in this simulation), the complete infor-
mation about the potential and the LFP dynamics at any
point in space can be gained from such plots. As the signal
moves in positive x direction for all following snapshots, we
read from right to left as opposed to Fig. 3.

Fig. 5 a shows the spatial structure of the extracellular
potential profile within the Debye layer, i.e., at most a few
nanometers from the membrane. It is almost exclusively
dominated by the intracellular potential (compare to
Fig. 5 b), meaning that the intracellular potential spreads
across the membrane into the extracellular space, even if
only with a greatly reduced amplitude. We call this the
echo of the AP.

The near-field potential profile (a few nanometers to ~10
mm from the membrane) in Fig. 6 (see also Movie S2) shows
that this echo of the AP has a significant effect on the LFP in
the extracellular domain. The profile begins to the right with
a rise in the potential (corresponding to P1) followed by a
Biophysical Journal 105(1) 242–254
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sharp drop (N1) and another rise (P2). After this first phase,
the potential has a longer phase of low variation (S) until
another, less pronounced peak is observed at the rear end
of the traveling action potential (P3).
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FIGURE 4 Total membrane flux at fixed point at the membrane. The

membrane flux at the same x coordinate as the potential curves from

Fig. 3 is plotted over time. The influence of membrane flux on the potential

can be clearly seen, but it cannot explain the first peak in the potential.
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When comparing this snapshot profile with the profile
immediately at the membrane (Fig. 5 a) by shape and
position, it can be observed that the single peak from
Fig. 5 a we termed the AP echo has been divided into two
parts P1 and P2 in Fig. 6 by an interrupting negative peak
N1. The value N1 is a result of the opening of voltage-gated
sodium channels and the following massive depletion of
sodium, as observable in Fig. 7 a: The total charge density
(compare to Fig. 7 d) follows the decrease in sodium and
generates the potential drop N1. Roughly speaking, the
activation of sodium channels and the resulting negative
peak N1 splits up the single positive peak from the AP
echo into two peaks P1 and P2.

The difference between the Debye layer (Fig. 5 a) and
near-field (Fig. 6) potential profiles is striking. The former
is dominated by the AP echo; the latter shows approxi-
mately equal contributions of membrane currents and intra-
cellular AP. This can be explained by the faster attenuation
of the AP echo over the Debye layer (note the strongly
reduced amplitude of P1 from Fig. 5 a to Fig. 6) in relation
to the potential evoked by membrane fluxes.

It is also notable that the second peak P2 is attenuated
much more quickly than P1 and can barely even be seen
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FIGURE 5 Snapshot of the Debye layer extracellular potential profile. (a) The potential values for a narrow stripe of the extracellular domain U
ðESÞ
elec

(corresponding to the shaded area from Fig. 1) just above the membrane are plotted at a fixed time. This turns out to be the intracellular AP (b) propagating

over the membrane, with a significantly reduced amplitude.
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at a distance of only a few micrometers away from the
membrane. Instead, the potential largely follows the mem-
brane flux from Fig. 4, which becomes the prevailing
driving force after its activation, as could already be seen
in Fig. 3. This does not necessarily mean that the potential
echo only has an effect on the extracellular field until the
channels are opened, but rather that the rest of the AP
echo (i.e., the falling edge) is hidden in the LFP signal, as
it is superimposed by the negative potential generated
by activating membrane currents. In this setup, the AP
advances the activation of channels by a few hundred
microseconds. A different channel timing might change
the resulting LFP waveform to a great extent.

The distance between the end of P1 and the beginning of
P3 close to the membrane (as in Fig. 6) is a good measure for
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the timescale of the extracellular field that we term the ‘‘LFP
valley length’’ (the region with negative potential values). It
also gives a characteristic length scale for the range of
simultaneous ion channel activity along the axon. In our
simulation, this length is ~2000 mm at the membrane.

Fig. 8 and Movie S3 show the potential for a large part of
the extracellular space, demonstrating that the near-field
potential profile essentially continues into distant space,
albeit attenuating quickly with distance. The LFP valley
length (the diameter of the green area) increases notably
with distance, which we attribute to the diffusive character
of the system. The general pattern of the LFP stays the
same: a positive upwind domain (P1) just in front of the
opening channels, followed by a negative middle region
(N1, S), and then again a positive rear domain (P3).
8000 10000

FIGURE 6 Snapshot of the near-field extracel-

lular potential profile. Plotted are the potential

values for a stripe of the extracellular domain

U
ðESÞ
elec just above the extracellular Debye layer

(i.e., above the shaded area from Fig. 1), at a fixed

time. It shows a more complex structure compared

to the Debye layer potential from Fig. 5.
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FIGURE 7 Snapshot of the Debye layer and near-field concentration profiles. The concentration profiles of all three ion species (a–c) and the charge
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The amplitudes of the potential are differing by several
orders of magnitude among the intracellular values
(~100 mV), the extracellular values close to the membrane
(up to a few 100 mV), and some millimeters away from the
membrane (fractions of 1 mV).

The influence of potential and concentration changes on
the local charge redistribution can be observed separately
by studying the ion flux from Fig. S3 and Fig. S4, for
each ion species. It gives a good impression about the com-
plex interplay of drift and diffusion causing ion movement
close to the membrane.
Comparison with line source approximation
model

The line source approximation introduced in Holt and Koch
(7) is widely used as an effective model to compute the
extracellular potential at any point in space, using only
the values of the membrane currents at a finite number of
line segments,
Biophysical Journal 105(1) 242–254
Fðr; hÞ ¼ rI

4pDs
log

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ r2

p � hffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2

p � l

�����; (13)

where r is the radial distance from the line of length Ds, h
is the longitudinal distance from the end of the line, and
l ¼ Ds þ h is the distance from the start of the line. The
parameter r describes the resistivity of the extracellular
medium. This model is very convenient, especially when
using cable equation models based on a line segment
approximation of the original neuron geometry.

For the electrodiffusion model, the computed extra-
cellular field can easily be compared with the LSA results,
as the membrane currents are explicitly known from the
internal membrane flux boundary conditions, so they can
be inserted into the LSA expression from Eq. 13 directly.
The resistivity r was chosen manually in such a way that
the negative peaks N1 of electrodiffusion and LSA match
for a fixed position close to the membrane (z1 mm in this
case). This resulted in a value of r ¼ 37.4 Ucm,
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corresponding to a conductivity of s ¼ 2.67 S/m, which is
~30–50% higher than experimentally obtained values for
cerebrospinal fluid (24,25). Fig. 9 shows the comparison
of potential time courses for LSA and electrodiffusion
(ED) models at various distances from the membrane. Addi-
tionally, the difference between the two curves is plotted.

One can see that both signals show a set of common
features: The negative peak N1 following the dominating
sodium current in the beginning of an AP, followed by a
transition phase of slower variation (S) and the less pro-
nounced positive peak P3 during the repolarization phase.
But the electrodiffusion signal shows another sharp positive
peak (P1) right in the beginning, which is not present in the
LSA model.

The difference between the LSA and ED curves resem-
bles a distorted AP waveform that gets smeared out over
distance. Our explanation for the difference is that the ED
potential results from two contributors: The potential gener-
ated by membrane currents (as in LSA) and, in addition, an
AP echo part directly coming from the intracellular poten-
tial wave traveling along the axon. The difference plotted
in Fig. 9 would then largely represent the latter part of the
signal stemming from the AP echo alone.
Looking closely, there is also a slight delay in the ED
signal—i.e., the N1 peak is time-shifted by ~90 ms to the
LSA signal, with the same holding for the P3 peak. These
differences cannot be a result of the membrane current sour-
ces, as these are identical for both models, so it has to be an
effect of the extracellular medium. We attribute the delay to
the local effects of redistributing ion concentrations,
especially in the Debye layer with its large concentration
gradients, leading to a delayed transduction of the electric
field, wheras the LSA model assumes an instantaneous
response to the membrane current sources.
CONCLUSIONS

In this article we presented results from the numerical
simulation of an AP traveling along an active axonal mem-
brane and its spread into the extracellular space. To our
knowledge, this is the first time that such detailed informa-
tion about the dynamics of ion concentrations and the elec-
tric potential in time and space were given on this scale.
Recent applications of PNP theory to neurons have been
done in Lopreore et al. (11) and Mori et al. (13). In contrast
to these studies, we paid special attention in resolving the
Biophysical Journal 105(1) 242–254
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FIGURE 9 Comparison of electrodiffusion and line source approximation. The time courses of extracellular potentials calculated by electrodiffusion

(ED, dashed line) and line source approximation (LSA, solid line) models are compared at different distances from themembrane (a–f) for a fixed x coordinate.

The similar shape for the part between N1 and P3 is apparent, but the first peak P1 is missing in LSA. (Dash-dotted line) Difference between the two curves.
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Debye layer explicitly, thereby accounting for the effects of
large concentration gradients. This also adds the benefit that
both steady-state concentrations and equilibrium-
channel reversal potentials can be validated directly, using
Poisson-Boltzmann and Nernst equations, respectively.

The evolution of the LFP signal and its various features
have been analyzed particularly. We showed that the large
concentration gradients have a significant impact on the
near-field extracellular field. A detailed evaluation of the
Biophysical Journal 105(1) 242–254
results shows the complex interplay of potential and con-
centration changes on the local ion redistribution. The
intricate structure of the results (compare to Fig. 6) reveals
that the neural membrane dynamics—even in this very
simple case of a minimal set of only two channel
types—is highly nontrivial and that a detailed study is
indeed justified.

The main finding is that the electrodiffusion model
shows significant deviations from the well-established
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line source approximation model, in particular a positive
peak at the beginning of the LFP signal, directly caused
by the intracellular potential propagating into extracellular
space. This implies that there is a second component next
to membrane currents contributing to the generation of the
LFP signal, which we termed the ‘‘AP echo’’. This com-
ponent had a strong effect in our simplified model, but
this might look differently in other situations, e.g., in
myelinated fibers. In Gold et al. (5), the LSA showed a
good agreement with experimental data, although the
authors reported difficulties in fitting the intra- and
extracellular data simultaneously. However, there is also
experimental evidence that the LFP waveforms emerging
from the electrodiffusion model occur in unmyelinated
afferent nerve fibers (26) as well as in hippocampal CA1
neurons (27).

It remains to be shown in which situations the LSA model
gives a valid approximation, and under which conditions the
effect of the AP echo on the extracellular potential cannot be
neglected. An experimental study using juxta- and extracel-
lular recordings of axon fibers should be able to validate the
reported LFP attenuation and change in signal shape from
the Debye layer to near-field and the more distant extracel-
lular regime.

We emphasize that our model could numerically be simu-
lated with standard methods, i.e., with conforming finite
elements for the spatial and an implicit Euler method for
the time discretization. However, some essential precautions
had to be taken to ensure a stable and efficient method,
namely:

The grid had to resolve the Debye layer close to the mem-
brane in the direction normal to the membrane. For the
x direction, a much coarser mesh size was sufficient.

The PNP system had to be solved in a fully coupled
fashion, as an operator-splitting approach dramati-
cally reduced the time-step size needed for computing
a nonoscillatory solution.

The system had to be carefully equilibrated before setting
a stimulus, as the concentration profile toward the
membrane had to reach steady state to get meaningful
reversal potentials for each ion channel.

The choice of an implicit time-stepping scheme took
advantage of higher stable time-step values and
accounted for the diffusion-dominance in the Nernst-
Planck equation that we observed for parameters in
the physiological range.

The application of a threshold volume scaling was
crucial to compensate the large differences of residual
magnitudes introduced by the drastically varying cell
volumes in this cylinder geometry. With this, the
Newton iteration was able to converge even for large
domain sizes—using the same error tolerances as for a
plain two-dimensional simulation—with an only
slightly lower average time-step size.
The model used here does not claim to be fully realistic
nor complete from the biological point of view. Instead it
should be considered as a first attempt to model the
dynamics of neural systems on this spatial scale. Particu-
larly, the idealized setup of a single axon fiber in an extracel-
lular space consisting exclusively of fluid will rarely occur
in reality. Additionally, no synaptic currents were regarded,
which are thought to be the main contributors of electroen-
cephalography and LFP signals (28,29). However, the char-
acteristic features of the LFP signal could be explained by
the interplay of ion channel currents and electrolyte
dynamics alone in this model.

To arrive at more realistic models, the greatly simplified
geometry from this model will have to be replaced in a later
study by either explicitly incorporating a complex recon-
structed extracellular geometry, or by finding effective
material parameters (diffusivity of ions, electric permit-
tivity) for representative intra- and extracellular media
without explicitly modeling nearby cells.

For the axon geometry, assessing the impact of branching
structures and ultimately, a complete attached single cell
morphology with hundreds of compartments and synapses,
is of great interest. Because these complicated geometries
cannot be handled by a cylinder symmetry, a full three-
dimensional simulation has to be carried out for this, neces-
sitating the parallelization of our simulator.

Further model refinement concerning the detailed
structure and properties of the active membrane (channel
types and conductivities, surface charges, myelination)
will have to be done when comparing the results with exper-
imental data.
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